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> Spatial clustering of multivariate temporal
processes

> Space-time context
> Compound precipitation and wind speed extremes

> based on recent development about Al-block models (Boulin
et al., 2023)

> dependence summary measures appropriated for extreme value
random vectors



Outline

Introduction
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ERAD dataset

> We utilise the ERAS reanalysis dataset to investigate the
relationship between daily precipitation sums and
during the extended winter season
(November-March).
> Available on a spatial resolution of 0.25° on a regular grid, and
we focus on the box [-15°E,42.5°E] x [30°N, 75° N] which
covers Europe.
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Figure 1: Considered area in the study analysis.
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ERAD dataset

» Due to computational costs, we remap the original hourly data
to a regularly spaced grid with 0.5° spatial resolution and
compute daily precipitation sums and daily wind speed
maxima.

> From 1979 to 2022 (from november to march).

> The resulting dataset consists of daily sums of
precipitation and wind speed maxima over 91 x 116 pixels with
the chosen spatial resolution, hence 10556 pixels to cluster.
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Compounding extremes in Europe

Figure 2: Proportion of both the wind speed and total precipitation that
exceed their 0.9th quantiles simultaneously.
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Asymptotic (in)dependence

Extremal dependence between two
random variables Y and Y. Their
c.d.f are denoted by F() and F®).

- The y parameter

v =limyey [P’(F(I)(Y(l)) > ulF(y@) > u)

. P(FO(YWD)>u,FO (YP)>u)
=limy_ PO (YO)>) = limy— x(u)

o x>0 = YW and Y® are AD; the value of y quantifies the
strength of the extremal dependence.
e x=0= YW and Y® are Al.

- The extremal coefficient 8 =2—y
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Extremal correlation between precipitation (ZU)) and wind

speed (ZU?)) for each site j.
7 T T

Figure 3: Estimator of the extremal correlation, ¥ between precipitation
and wind. k=100.

- 1
X(a)= % l; ]I{RE“'”>n—k+0.5,R§“'2)>n—k+o.5}’ (1)
where REM) denotes the rank of Zl.(“’l) among Zl(a’[),...,Z,(la'g),

¢ = 1,2- 8/35



Extremal correlation according to distance between two sites
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Figure 4: Estimator of the extremal correlation, ¥ for precipitation data
(left) and for wind speed (right)
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Dependence-based Regionalisation. Rainfall data.

v

Bernard, Naveau, Vrac, Mestre, 2013

Extremal dependence
Partionning Around Medoids

\4

Saunders, Stephenson, Karoly, 2021

Extremal dependence
Hierarchical clustering

v

Maume-Deschamps, Ribereau, Zeidan, 2023
Extremal concurrence probability (Dombry et al. 2018)
Spectral clustering

Boulin, Di Bernardino, Laloe, Toulemonde, 2023

Extremal dependence
Presence of temporal dependence
Asymptotic Independent Al-block model

v
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Max domain of attraction

> Suppose Y, = (Y,(ll),...,Y,(ld)) is a stationary multivariate
random process i.d. as Y (with c.d.f. F), a d-dimensional
random vector

> We assume to be in the max-domain of attraction of an EVD,
i.e.,

’}L%lou»{\_’l/lvi < un(x)} _ H(x)

where u,(x) a d-dimensional vector of normalising functions
and H an extreme value distribution (EVD)

> the univariate marginals H(l),...,H(d) of H are univariate EVD
> the dependent structure of H

—InH(x) = L(-In HO (xW), ..., - In H@ (x(4)y)
L:[0,00)% — [0,00) the stable tail dependence function

L(x) = lim ' PFED (YD) > 1-Wor...or F@ (YD) > 1- 14}
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Asymptotic Independent block model

» (Y,,neN) exhibits Asymptotic Independence (Al) when the
limit distribution, the multivariate extreme value distribution
is equal to the product of its marginal EVD HO,...,H® .

4
H=1L,HY)

> (Y, neN) is said to follow an Al block model with G groups if
there exists a partition O= {Og}gG:1 of {1,...,d} with |Og| = dg
and marginal extreme value distributions H(%) : R% — [0, 1]

such that
H: nglH(Og)
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Asymptotic Independent block model

> variable clustering in order to separate groups which
can be assumed to be independent in the extremes

spatial clustering based on temporal processes

matrix of extremal correlation
coefficients y between each pair of sites

> algorithm which retrieves the thinnest partition
with high probability
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Outline

A measure for evaluating dependence between compound extremes
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Notations
> Specifically, let (ZE,S),SE DcR? ne N) be a spatio-temporal

random field.

> ng) = (Z,(‘f‘]), ) is a vector corresponding to the daily sums
of precipitation and at time n at location
s.

> Assume that observations are available
over d (in our dataset, d =10556) spatial locations
for each time » (total )
We have Z,, = (2511),...,22‘”), where Z,, is a 2d-random vector
with stationary law Z = (zZ(,...,Z(?),
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Sum of Extremal COefficient

» We introduce a new coefficient called Sum of Extremal
COefficient (SECO).

> The purpose of this metric is to quantify any deviation from
asymptotic independence of groups of variables.

> The pairwise SECO metric is defined as
SECO(ZY,Z2(")) = 0(a) +0(b) - 0(a,b).
where

0(j) =limaq~ IP{;H%FW)( zU ))>1—q}, j=ab

- 1 10) (700)
0(ab) = llgnq [P’{gns)ﬁnzlnglf (Z9)>1- q}
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A measure of dependence
SECO(Z9,Z")) = 0(a) +6(b) —0(a, b).

» The SECO metric is always positive and quantifies the
deviation from asymptotic independence between the two
groups of variables.

> Indeed, the SECO metric is equal to zero if and only if the two
groups of variables are asymptotically independent random
vectors.

> Furthermore, the pairwise SECO reduces to the extremal
correlation

sEco(zM),z?))=2-0(1,2) = y(1,2),
if Z and Z®) are univariate random variables.
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An empirical estimator of SECO

> The empirical counterpart of the SECO is denoted as
SECO(Z@,Z(®)) and is defined as:

SECO(Z@,Z2")) =8(a) +8(b) -0(a, b),

where 8 is a nonparametric estimator of the extremal
coefficient 6 (see for instance [Einmahl et al., 2012]) where

0)=73 1

i=1

(BRI >n-k+0.5 or R9P sn-k+05 I =D b (2)

. il 0 j, 0 i) .
with jo ) the rank of Zl.(] ) among Zl(’ ),...,Z,(;’ ), j=a,b,

¢=1,2.
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» Under mixing conditions, we can show that this statistic is
consistent i.e.

SECO(Z@,z®) L sgco(z@,zM).

n—oo

» Furthermore, we have

O(a,b) := SECO(Z¥,Z")) /min{B(a),d(b)} € [0,1].
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Pairwise SECO between sites
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Figure 5: Pairwise empirical SECO using the 100 greatest value with
respect to the pairwise distance.
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Outline

Clustering algorithm for compound extreme events
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Constrained Asymptotic Independent block model

A constrained asymptotic independent block model is defined by
» Z a 2d-vector with law F having d marginal random vectors (d
sites): Z=(z(LD), z(12) Zz(21) 7(22)  Z(d1) 7(d2))
» F is in the max domain of attraction of H.

> There exists O= {Og}g:1 a partition of {1,...,d} in G groups
with |Og| = dg and marginal extreme value distributions
H(%) :R% — [0,1] such that H=TIJ_ H(%).
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Bivariate comparison to retrieve the hidden partition

In a constrained asymptotic independent block model, the following
statement
Z(Ogl) J—Lext Z(ng)

is equivalent to the following statement, implying the SECO
SECO(a, b) = SECO(b,a) =0,Va€ Og,Vbe Og,.

Thus, the SECO is a sufficient metric to derive a simple, yet
powerful, algorithm to recover the hidden partition.

23/35



The algorithm

> Algorithm CAICE (Clustering procedure for Al block models
with compound extremes) for S={1,...,d}

> Based on the normalised SECO
©(a, b) = SECO(a, b)/min{@(a),0(b)}, a,be(l,....d), (3)

> No choice for the number of groups
> Involving a threshod 7



CAICE(S, T, ©)

Algorithm (CAICE) Clustering procedure for AI block models with compound extremes

1: procedure CAICE(S, 7, ©)

2. Initialise: S = {1,...,d}, O(a,b) for a,b€ {1,...,d} and [ =0
3 while S # () do

4: l=1+1

5: if |S| > 1 then .

6 (a;, b)) = arg max O(a,b)

7. if ©(as, b)) > 7 then )

8: O={s€8S:0(a,s)>rand O(b,s) > 7}
o: if ©(a;,by) < 7 then

10: O = {a[}
11: if |S| =1 then
12: Ol =8
13: S=8\O

14: return O = (Ol)[
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How to set up the threshold 77

> Set the threshold parameter in the algorithm.
> For this threshold 7, the algorithm returns a partition
O1,...,0¢ of {1,...,d} with respective sizes dj.

> With this partition, in each cluster g, X&) is a
(2dg)-dimensional random vector for which we can compute

0(g).
» The empirical SECO of this partition is

G
seco(XW, .., XN =Y 8(g)-0(1,..., d).
g=1

» Find 7 which minimizes the empirical SECO permit to recover
an Al-block model



Outline

Detecting concomitant extremes of compound precipitation and
wind speed extremes
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Calibration of the threshold 7

0.08 0.09
Treshold T

Figure 6: Value of the function L for T € A ={0.05,0.0525,...,0.12} for the
30 greatest values.

with

L(1) = ln(l + (sﬁﬁ)(x(”,...,x(@) —minsch)(x“),...,x(G)))).

TEA
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Clustered pairwise SECO
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Figure 7: Partition of the SECO similarity matrix with threshold 7 =0.08.
Squares represent the clusters of variables.
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Spatial representation of clusters O*W
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Figure 8: Representation of the 9 largest clusters (in decreasing order) of
the partition of the SECO matrix between daily precipitation sums and
wind speed maxima with threshold 7 =0.08.
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Hierarchical clustering on the fourth cluster
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Figure 9: Representation of the 3 clusters of the partition of the 1868
pixels of the fourth cluster of the partition given by Algorithm CAICE
using extremes of daily total precipitation and wind speed maxima.
1-SECO is used as the dissimilarity matrix
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Outline

Conclusions
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What has been presented

> Proposition of the SECO

> Spatial clustering of multivariate processes based on extremal
dependence

> ldentify areas within Europe that exhibit independence
regarding the extremes of compound precipitation and wind
speed.



What has not been presented

» Quantify the role of Precipitation and the role of wind in the
construction of the partition using the Adjusted Rank Index
(ARI), a concordance score between two different partitions.

> The natural extension to p; marginal univariate random
variables in each site.
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