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Ï Main objective : Spatial clustering of multivariate temporal
processes

Ï Space-time context
Ï Compound precipitation and wind speed extremes

Ï based on recent development about AI-block models (Boulin
et al., 2023)

Ï dependence summary measures appropriated for extreme value
random vectors
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ERA5 dataset
Ï We utilise the ERA5 reanalysis dataset to investigate the

relationship between daily precipitation sums and daily wind
speed maxima during the extended winter season
(November-March).

Ï Available on a spatial resolution of 0.25◦ on a regular grid, and
we focus on the box [−15◦E,42.5◦E]× [30◦N ,75◦N ] which
covers Europe.

Figure 1: Considered area in the study analysis.
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ERA5 dataset

Ï Due to computational costs, we remap the original hourly data
to a regularly spaced grid with 0.5◦ spatial resolution and
compute daily precipitation sums and daily wind speed
maxima.

Ï From 1979 to 2022 (from november to march).
Ï The resulting dataset consists of 6655 daily sums of

precipitation and wind speed maxima over 91×116 pixels with
the chosen spatial resolution, hence 10556 pixels to cluster.
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Compounding extremes in Europe
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Figure 2: Proportion of both the wind speed and total precipitation that
exceed their 0.9th quantiles simultaneously.
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Asymptotic (in)dependence

Extremal dependence between two
random variables Y (1) and Y (2). Their
c.d.f are denoted by F(1) and F(2).

- The χ parameter

χ= limu→1P
(
F(1)(Y (1))> u|F(2)(Y (2))> u

)
= limu→1

P(F(1)(Y (1))>u,F(2)(Y (2))>u)
P(F(2)(Y (2))>u)

≡ limu→1χ(u)

• χ> 0 ⇒ Y (1) and Y (2) are AD; the value of χ quantifies the
strength of the extremal dependence.
• χ= 0 ⇒ Y (1) and Y (2) are AI.

- The extremal coefficient θ = 2−χ
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Extremal correlation between precipitation (Z(j,1)) and wind
speed (Z(j,2)) for each site j.
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Figure 3: Estimator of the extremal correlation, χ̂ between precipitation
and wind. k = 100.

χ̂(a)= 1

k

n∑
i=1
1

{R
(a,1)
i >n−k+0.5,R

(a,2)
i >n−k+0.5}

, (1)

where R
(a,`)
i denotes the rank of Z

(a,`)
i among Z

(a,`)
1 , . . . ,Z

(a,`)
n ,
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Extremal correlation according to distance between two sites
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Figure 4: Estimator of the extremal correlation, χ̂ for precipitation data
(left) and for wind speed (right)
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Dependence-based Regionalisation. Rainfall data.

Ï Bernard, Naveau, Vrac, Mestre, 2013
Extremal dependence
Partionning Around Medoids

Ï Saunders, Stephenson, Karoly, 2021
Extremal dependence
Hierarchical clustering

Ï Maume-Deschamps, Ribereau, Zeidan, 2023
Extremal concurrence probability (Dombry et al. 2018)
Spectral clustering

Ï Boulin, Di Bernardino, Laloe, Toulemonde, 2023
Extremal dependence
Presence of temporal dependence
Asymptotic Independent AI-block model
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Max domain of attraction
Ï Suppose Yn = (Y

(1)
n , . . . ,Y

(d)
n ) is a stationary multivariate

random process i.d. as Y (with c.d.f. F), a d-dimensional
random vector

Ï We assume to be in the max-domain of attraction of an EVD,
i.e.,

lim
n→∞P

{
n∨

i=1
Yi ≤ un(x)

}
= H(x)

where un(x) a d-dimensional vector of normalising functions
and H an extreme value distribution (EVD)

Ï the univariate marginals H(1), . . . ,H(d) of H are univariate EVD
Ï the dependent structure of H

− lnH(x)= L(− lnH(1)(x(1)), . . . ,− lnH(d)(x(d)))

L : [0,∞)d → [0,∞) the stable tail dependence function

L(x)= lim
t→0

t−1P{F(1)(Y (1))> 1−tx(1)or . . .or F(d)(Y (1))> 1−tx(d)}
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Asymptotic Independent block model

Ï (Yn,n ∈N) exhibits Asymptotic Independence (AI) when the
limit distribution, the multivariate extreme value distribution H
is equal to the product of its marginal EVD H(1), . . . ,H(d) :

H =Πd
j=1H(j)

Ï (Yn,n ∈N) is said to follow an AI block model with G groups if
there exists a partition O = {Og }G

g=1 of {1, . . . ,d} with |Og | = dg

and marginal extreme value distributions H(Og) :Rdg → [0,1]
such that

H =ΠG
g=1H(Og)

.
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Asymptotic Independent block model

Ï Method: variable clustering in order to separate groups which
can be assumed to be independent in the extremes

Ï Application: spatial clustering based on temporal processes
Ï Fundamental object: matrix of extremal correlation

coefficients χ between each pair of sites
Ï Proposal: algorithm which retrieves the thinnest partition

with high probability
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Notations
Ï Specifically, let (Z(s)

n ,s ∈ D ⊆R2,n ∈N) be a spatio-temporal
random field.

Ï Z(s)
n = (Z

(s,1)
n ,Z

(s,2)
n ) is a vector corresponding to the daily sums

of precipitation and wind speed maxima at time n at location
s.

Ï Assume that observations are available
over d (in our dataset, d = 10556) spatial locations
for each time n (total 6655)

We have Zn = (Z(1)
n , . . . ,Z(d)

n ), where Zn is a 2d-random vector
with stationary law Z= (Z(1), . . . ,Z(d)).
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Sum of Extremal COefficient

Ï We introduce a new coefficient called Sum of Extremal
COefficient (SECO).

Ï The purpose of this metric is to quantify any deviation from
asymptotic independence of groups of variables.

Ï The pairwise SECO metric is defined as

SECO(Z(a),Z(b))= θ(a)+θ(b)−θ(a,b).

where

θ(j)= lim
q→0

q−1P

{
max
`=1,2

F(j,`)(Z(j,`))> 1−q

}
, j = a,b

θ(a,b)= lim
q→0

q−1P

{
max
j=a,b

max
`=1,2

F(j,`)(Z(j,`))> 1−q

}
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A measure of dependence

SECO(Z(a),Z(b))= θ(a)+θ(b)−θ(a,b).

Ï The SECO metric is always positive and quantifies the
deviation from asymptotic independence between the two
groups of variables.

Ï Indeed, the SECO metric is equal to zero if and only if the two
groups of variables are asymptotically independent random
vectors.

Ï Furthermore, the pairwise SECO reduces to the extremal
correlation

SECO(Z(1),Z(2))= 2−θ(1,2)=χ(1,2),

if Z(1) and Z(2) are univariate random variables.
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An empirical estimator of SECO

Ï The empirical counterpart of the SECO is denoted as�SECO(Z(a),Z(b)) and is defined as:

�SECO(Z(a),Z(b))= θ̂(a)+ θ̂(b)− θ̂(a,b),

where θ̂ is a nonparametric estimator of the extremal
coefficient θ (see for instance [Einmahl et al., 2012]) where

θ̂(j)= 1

k

n∑
i=1
1

{R
(j,1)
i >n−k+0.5 or R

(j,2)
i >n−k+0.5}

, j = a,b, (2)

with R
(j,`)
i the rank of Z

(j,`)
i among Z

(j,`)
1 , . . . ,Z

(j,`)
n , j = a,b,

`= 1,2.

18/35



Ï Under mixing conditions, we can show that this statistic is
consistent i.e.

�SECO(Z(a),Z(b))
P−−−−→

n→∞ SECO(Z(a),Z(b)).

Ï Furthermore, we have

Θ̂(a,b) := �SECO(Z(a),Z(b))/min{θ̂(a), θ̂(b)} ∈ [0,1].
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Pairwise SECO between sites
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Figure 5: Pairwise empirical SECO using the 100 greatest value with
respect to the pairwise distance.

20/35



Outline

Introduction

A measure for evaluating dependence between compound extremes

Clustering algorithm for compound extreme events

Detecting concomitant extremes of compound precipitation and
wind speed extremes

Conclusions

21/35



Constrained Asymptotic Independent block model

A constrained asymptotic independent block model is defined by
Ï Z a 2d-vector with law F having d marginal random vectors (d

sites): Z= (Z(1,1),Z(1,2),Z(2,1),Z(2,2), . . . ,Z(d,1),Z(d,2))

Ï F is in the max domain of attraction of H.
Ï There exists O = {Og }G

g=1 a partition of {1, . . . ,d} in G groups
with |Og | = dg and marginal extreme value distributions
H(Og) :Rdg → [0,1] such that H =ΠG

g=1H(Og).
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Bivariate comparison to retrieve the hidden partition

In a constrained asymptotic independent block model, the following
statement

Z(Og1 ) ⊥⊥ext Z(Og2 )

is equivalent to the following statement, implying the SECO

SECO(a,b)= SECO(b,a)= 0,∀a ∈ Og1 ,∀b ∈ Og2 .

Thus, the SECO is a sufficient metric to derive a simple, yet
powerful, algorithm to recover the hidden partition.
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The algorithm

Ï Algorithm CAICE (Clustering procedure for AI block models
with compound extremes) for S = {1, . . . ,d}

Ï Based on the normalised SECO

Θ̂(a,b)= �SECO(a,b)/min{θ̂(a), θ̂(b)}, a,b ∈ {1, . . . ,d}, (3)

Ï No choice for the number of groups
Ï Involving a threshod τ
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CAICE(S, τ, Θ̂)
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How to set up the threshold τ?

Ï Set τ> 0 the threshold parameter in the algorithm.
Ï For this threshold τ, the algorithm returns a partition

Ô1, . . . ,ÔG of {1, . . . ,d} with respective sizes dg .

Ï With this partition, in each cluster g, X(g)
τ is a

(2dg)-dimensional random vector for which we can compute
θ̂(g).

Ï The empirical SECO of this partition is

�SECO(X(1)
τ , . . . ,X(G)

τ )=
G∑

g=1
θ̂(g)− θ̂(1, . . . ,d).

Ï Find τ which minimizes the empirical SECO permit to recover
an AI-block model
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Calibration of the threshold τ
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Figure 6: Value of the function L for τ ∈∆= {0.05,0.0525, . . . ,0.12} for the
30 greatest values.

with

L(τ)= ln

(
1+

(�SECO(X(1)
τ , . . . ,X(G)

τ )−min
τ∈∆

�SECO(X(1)
τ , . . . ,X(G)

τ )

))
.
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Clustered pairwise SECO
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Figure 7: Partition of the SECO similarity matrix with threshold τ= 0.08.
Squares represent the clusters of variables.
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Spatial representation of clusters ÔPW
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Figure 8: Representation of the 9 largest clusters (in decreasing order) of
the partition of the SECO matrix between daily precipitation sums and
wind speed maxima with threshold τ= 0.08.
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Hierarchical clustering on the fourth cluster
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Figure 9: Representation of the 3 clusters of the partition of the 1868
pixels of the fourth cluster of the partition given by Algorithm CAICE
using extremes of daily total precipitation and wind speed maxima.
1− �SECO is used as the dissimilarity matrix
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What has been presented

Ï Proposition of the SECO
Ï Spatial clustering of multivariate processes based on extremal

dependence
Ï Identify areas within Europe that exhibit independence

regarding the extremes of compound precipitation and wind
speed.

33/35



What has not been presented

Ï Quantify the role of Precipitation and the role of wind in the
construction of the partition using the Adjusted Rank Index
(ARI), a concordance score between two different partitions.

Ï The natural extension to pj marginal univariate random
variables in each site.
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