
Forêts aléatoires pour variables structurées

Audrey Poterie - Data Science pour les risques côtiers

13-15 novembre 2023 - Station Biologique de Roscoff (France)



Contexte



Classical statistical framework

Supervised learning: we are given a dataset Dn = {(X1,Y1), . . . , (Xn,Yn)}
where the pairs (Xi ,Yi ) are i.i.d distributed as (X,Y ) and such that

. X = (X1, . . . ,Xd) ∈ Rd (inputs)

. Y ∈ Y (response variable) with

- Y = R in regression,

- Y = {1, . . . ,K} in classification (k ∈ N).

Ü Question: for each x ∈ Rd , predict the response ŷ ∈ Y i.e. find a predictor

ĥ : Rd → Y,

such that ĥ(xi ) ≈ yi , for i = 1, . . . , n.

Ü Multiple approaches: SVM, random forests, boosting, CNN, etc.
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Our statistical framework

Further assumption: we assume that

X = (X1, . . . ,XJ)

is structured into J known groups where the jth group of size dj is denoted

Xj = (Xj1 ,Xj2 , . . . ,Xjdj
).

Ü Reference approaches: group lasso methods (group lasso, sparse group

lasso, weighted group lasso, etc.)

Objective

Develop a random forest method to supervised problems in which X has a known

group structure.
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Examples of inputs with a known group structure

Gene expression data:

Reynier et al., (2011). Importance of correlation between gene expression levels: application to the type I interferon

signature in rheumatoid arthritis. PloS one. 3



Examples of inputs with a group structure

Spectrometry data:

Luabi et al., (2015). Non invasive blood glucose level measurement using nuclear magnetic resonance. Proceedings

of the 8th IEEE GCC Conference and Exhibition.
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Random forests



Random forests

Phil Cutler

Random forests [Breiman, 2001] are a class of algorithms used to solve

regression and classification problems

. Large applicability: used in many applied fields since they handle

high-dimensional settings.

. Successful methods: good predictive power, can outperform

state-of-the-art methods.

Ü A random forest = aggregation of many random decision trees.
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How to build a CART tree ?

. CART [Breiman et al., 1984]: non parametric learning algorithm.

. Idea: a tree is built recursively by recursively splitting the inoput space Rd .

into two disjoint regions until some stopping criterion is satisfied.
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. Prediction rule in each terminal node: mean value (regression) vs. the

majory vote (classification).
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Decision tree are defined by

. A splitting criterion: maximize the impurity decrease

∆I (j , θ) = I (t)−
[
ptL(j,θ)I (tL(j , θ)) + ptR (j,θ)I (tR(j , θ))

]
,

where

• tL(j , θ) = {X ∈ t|Xj ≤ θ} and tR(j , θ) = {X ∈ t|Xj > θ},
• I(t): impurity in node t,

• I (tz ): impurity in node tz (j , θ), for s ∈ {L,R},
• ptz : proportion of observations in t that fall into tz (j , θ), for z ∈ {L,R}.

Ü Several impurity functions (Gini/entropy for classification, variance for

regression).

. A stopping rule: no stopping rule, grow the maximal tree and then select

of the best subtree.
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Principle of random forests

. A random forest = aggregation of many random decision trees.

. Random forests algorithm = bagging + features sampling.

Phil Cutler
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Principle of random forests

𝐷!
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Bootstrap

Tree RI

. At each node, preselect a subset of mtry variables eligible for splitting.
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Principle of random forests
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Objective

Develop a random forest method to supervised problems in which X has a known

group structure.
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Decision trees for grouped inputs



Decision trees for grouped inputs

Decision tree are defined by

. A splitting criterion: maximize the impurity decrease

∆I (j , θ) = I (t)−
[
ptL(j,θ)I (tL(j , θ)) + ptR (j,θ)I (tR(j , θ))

]
.

. A stopping rule: no stopping rule, grow the maximal tree and then select

of the best subtree.

10



Decision trees for grouped inputs

Decision tree are defined by

. A splitting criterion: maximize the impurity decrease

∆I (j , θ) = I (t)−
[
ptL(j,θ)I (tL(j , θ)) + ptR (j,θ)I (tR(j , θ))

]
.

. A stopping rule: no stopping rule, grow the maximal tree and then select

of the best subtree.

?

?

X2 ≤ θ3 X2 > θ3

?

?

10



Decision trees for grouped inputs

Decision tree are defined by

. A splitting criterion: maximize the impurity decrease

∆I (j , θ) = I (t)−
[
ptL(j,θ)I (tL(j , θ)) + ptR (j,θ)I (tR(j , θ))

]
.

. A stopping rule: no stopping rule, grow the maximal tree and then select

of the best subtree.

f j1 (X
j) ≤ θ1

f j
′

2 (Xj′) ≤ θ2

X2 ≤ θ3 X2 > θ3

f j
′

2 (Xj′) > θ2

f j1 (X
j) > θ1

10



Decision trees for grouped inputs

f j1 (X
j) ≤ θ1

f j
′

2 (Xj′) ≤ θ2

X2 ≤ θ3 X2 > θ3

f j
′

2 (Xj′) > θ2

f j1 (X
j) > θ1

Definition of a split based on a group j :

. Via a regularized LDA Ü Developement of Tree Penalized

Linear Discriminant Analysis (TPLDA)

[Poterie et al., 2019]

. Via a CART tree Ü Extension of CART for Grouped

Inputs (CARTGI). [Poterie, 2018, Poterie et al., 202X]
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TPLDA

We want to split t into

tL(j , θ) = {X ∈ t|f jt (Xj) ≤ θ} and tR(j , θ) = {X ∈ t|f jt (Xj) > θ}

with j ∈ {1, . . . , J} and θ ∈ R.

Ü Geometric defintion of a split: a linear combination of the variables in group

Xj

(βj)>Xj = ft(Xj)
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TPLDA

Estimation method

. For group j , find βj = (βj
1, . . . , β

j
dj

) ∈ Rdj by maximizing the Fisher’s

criterion in node t:

max
βj∈Rdj

(βj)>B̂ j
t β

j − λj

dj∑
`=1

|σ̂j
t,`β

j
`|

 subject to (βj)>Σ̂j
t β

j ≤ 1,

with

• σ̂j
t,`: within-class standard deviation estimate of Xj

`,

• B̂ j
t : standard estimate of the between-class covariance of Xj ,

• Σ̂j
t : diagonal estimate of the within-class covariance of Xj

• λj∈ R+: regularization parameter.

. Find a split for each group, then select the one that maximizes

∆I (j , θ) = pen(dj)
{
I (t)− [ptL(j,θ)I (tL(j , θ)) + ptR (j,θ)I (tR(j , θ))]

}
,

where pen(dj) is decreasing function of the group size dj .
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Non linear approach: CARTGI

We want to split t into several disjoint nodes using information from a group

Xj , (j ∈ {1, . . . , J}).

Geometric defintion of a split: a partition of the input space defined according

to variables of a group Xj .
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CARTGI

Estimation method

. For group j , build a CART tree with root t and depth Dj

Node t Tree on node t Split of t

t

p1 ≤ δ1

p2 ≤ δ2

p2 ≤ δ3 p2 > δ3

p2 > δ2

p1 > δ1

t

t j
1

t j
2

t j
4

t j
5

t j
6t j

3

t

t2 t3t1 t4

. Find a split for each group, then select the one that maximizes

∆I (j) = pen(dj)

[
nt I (t)−

L∑
l=1

ntl (j)I (tl(j))

]
where pen(dj) is decreasing function of the group size dj .
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Pruning strategy

Find a pruned subtree of Tmax that minimizes

Rα(T ) = R(T ,Dn) + α|T̃ |, α ∈ R+,

where

• R(T ,Dn): the prediction error,

• |T̃ |: the number of leaves of T ,

• α: a tuning parameter which controls the complexity of the tree.
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Pruning strategy

Theorem: Generalized cost-complexity pruning [Poterie, 2018]

For any non-trivial and non-binary tree T with root t1, there exist a unique

sequence

0 = α1 < . . . < αK =∞

and a unique sequence of nested subtrees of T

T � T1 � . . . � TK = {t1}

such that for every 1 ≤ k < K ,

∀ α ∈ [αk ;αk+1[, Tk = argmin
T ′�T

Rα(T ′), and

∀ α ≥ αK , TK = argmin
T ′�T

Rα(T ′).

Ü In practice, crossvalidation and train-test split can be used to select the best

subtree in the sequence.
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Random forests for grouped inputs

(RFGI)



Principle of random forests for groups of inputs (RFGI)

RFGI algorithm = bagging + features and groups sampling.
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Principle of random forests for groups of inputs (RFGI)

RFGI algorithm = bagging + features and groups sampling.

Bootstrap

Random 
CARTGI tree

𝐷!

𝐷!"
!

𝐷!"
" 𝐷!"

#

"ℎ(. , Θ#, Θ$#) "ℎ(. , Θ%, Θ$%) "ℎ(. , Θ&, Θ$&)

. At each node, preselect randomly mgrp groups eligible for splitting.

. Build a tree RI on each selected groups by preselecting mvar inputs eligible

for splitting at each step.
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Principle of random forests for groups of inputs (RFGI)

RFGI algorithm = bagging + features and groups sampling.
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RFGI

RFGI algorithm

Input: an observation x ∈ Rd , Dn, ntree, mgrp, mvarj , Dj , for all j = 1, . . . , J.

Repeat ntree times the following steps:

1. Build the bootstrap sample Db
n .

2. Grow a maximal“random” CARTGI tree ĥ(.,Θb,Θ′b).

• Use only a random subset of mgrp groups to select a split.

• Grow random CART trees

⇒ at each step, use only a random subset of mvarj inputs.

• No pruning phase

Output: prediction of the random forest for observation x

ĥRFGI (x) = aggregation
{
ĥ(x,Θ1,Θ′1), . . . , ĥ(x,Θntree,Θ′ntree)

}
.

18



RFGI parameters

. mgrp/mvarj = the number of selected groups/variables
Ü Important parameters, analogues of mtry.
Ü Default values:

. mgrp= J/3 and mvarj = dj/3 in regression,

. mgrp=
√
J and mvarj =

√
dj in classification.

. Dj = the depth of each splitting tree.

Ü Controls the trade-off between adjustment and complexity.

Ü Suggested values: Dj= 2, 3 for all j .

19



Group importance and interpretation

Group importance measure

Mean decrease in Accuracy (MDA) for group Xj : weighted difference between

the forest error err(ĥRFGI ) and the permuted forest error ẽrr j(ĥRFGI )

MDA(Xj) =
1

dj

{
ẽrr j(ĥRFGI )− err(ĥRFGI )

}
.

Ü Adaptation of the measure of grouped importance [Gregorutti et al., 2015].
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Numerical experiments

Model 1: no “real” group structure (block covariance matrix).

• n = 500, J = 10 groups including 5 predictive groups, dj = 10.

Model 2: group structure, non-linear relationship + interactions in groups.

• n = 1000, J = 10 groups including 2 predictive groups, dj = 5.

Model 3: group structure, linear relationship in groups.

• n = 1000, J = 10 groups including 2 predictive groups, dj = 5 or dj = 50.

RFGI RF CARTGI TPLDA CART Group-Lasso

Model 1

AUC 0.83 (0.01) 0.83 (0.01) 0.69 (0.03) 0.76 (0.02) 0.68 (0.03) 0.67 (0.02)

Error 0.24 (0.01) 0.23 (0.01) 0.33 (0.02) 0.28 (0.02) 0.33 (0.02) 0.35 (0.03)

Model 2

AUC 0.94 (0.02) 0.85 (0.04) 0.78 (0.04) 0.61 (0.09) 0.73 (0.06) 0.50 (0.03)

Error 0.15 (0.03) 0.24 (0.04) 0.25 (0.04) 0.41 (0.09) 0.31 (0.06) 0.49 (0.02)

Model 3

AUC 0.86 (0.03) 0.82 (0.03) 0.73 (0.03) 0.78 (0.03) 0.71 (0.04) 0.90 (0.02)

Error 0.21 (0.03) 0.25 (0.03) 0.30 (0.03) 0.23 (0.03) 0.32 (0.04) 0.15 (0.02)

Tuning parameters are selected by using cross-validation and a validation sample.

21



Simulations: measure of group importance

Model 1: no “real” group structure (block covariance matrix), Gaussian mixture.

• J = 10 groups with each dj = 10 variables.

• No between-group correlation.

• 5 relevant groups = groups with ood index.

• I (X1) > I (X3) > I (X5) > I (X7) > I (X9).

TPLDA CARTGV RFGV
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Applications to real data



Applications to real data

Gene expression data 1: colitis data [Burczynski et al., 2006].

• n = 127 patients whom 85 patients with Crohn’s disease or ulcerative colitis

• d = 7818 genes grouped into J = 275 groups including (average size: 30 genes).

Gene expression data 2: breast cancer data [Ma et al., 2004].

• n = 60 patients whom 28 with cancer reccurence.

• d = 4246 genes grouped into J = 268 groups including (average size: 18.5 genes).

Extreme weather event data : Flash Flood Information Retrieval data [Wilkho et al., 2023]

• n = 14420 webpages whom 1560 are related to flash flood (10,8%).

• d = 40 synthetic variables grouped into J = 8 groups including (group size between 3 and

10 variables).

RFGI RF Sparse-group lasso? Group-Lasso?

colitis data

Accuracy 0.93 (0.04) 0.93 (0.04) 0.87 0.84

breast cancer data

Accuracy 0.53 (0.12) 0.48 (0.12) 0.70 0.60

flood data

Accuracy 0.95 (2E-3) 0.95 (2E-3) - -

Results from [Simon et al., 2013].
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Applications to real data: group/variable importance

Normalized MDA for variables in RF
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Applications to real data: group/variable importance

Normalized MDA for groups in RFGV
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Conclusions, perspectives



Conclusions, perspectives

• Development of decision-tree and random forests methods for groups

of variables.

• Methods implemented in R and Python.

• In R: TPLDA and dtrfgv (available on github).

• Fast implemention in Cython: extension of the library scikit-learn (available

on github).

Actual questions:

• How to automatically define the group structure ?

• How to build random forest for data with spatio-temporal data ?
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